MARK SCHEME for the October/November 2012 series

0580 MATHEMATICS

0580/42

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0580	42

Abbreviations

1

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
WWW	without wrong working
art	anything rounding to
soi	seen or implied

Qu.	Answers	Mark	Part Marks
1	(a) (i) 5	2	M1 for $\frac{3 \times 15}{(5+3+1)}$
	(ii) 108	2	M1 for $60 \times \frac{9}{5}$ oe
	(b) Correct conversion of money $J \times 0.718$ or $A \div 0.718$	M1	Correct conversion of money soi by 146.83[1] rounded or truncated to 3sf or 134.26[1] rounded or truncated to 3 sf if done 1 st
	Correct equalising of weights e.g. $J \times \frac{2[0]}{3[0]} \qquad \text{or } A \times \frac{3[0]}{2[0]}$ or J ÷ 3 and A ÷ 2 or J ÷ 30 and A ÷ 20	M1	Correct equalising of weights or money Accept other methods that give a pair of comparable values for method and accuracy marks This mark can be implied by values seen correct to 3 sf or better
	97 to 98 or 201[.39] and Ann <u>48.9[4]</u> and 48.2[0] and Ann or 68[.16] to 68.[2] and <u>67[.13]</u> and Ann <u>4.88 to 4.9</u> and 4.82 and Ann or 6.8[1] to 6.82 and <u>6.7[1]</u> and Ann WWW	A2	The underlined values imply M1 for the money conversion Or A1 for 97 to 98 or 201[.39] or a correct pair of values with wrong/no conclusion
	(c) 302 Final answer	3	M1 for 60 × 60 × 4 soi by 14400 or figs 6048 or figs 3024 and M1 for ÷ (1000 × 20) soi Answer 302.4 implies M2

M2 for $\frac{15.3[0]}{1.125}$ oe (d) 13.6[0] 3 or M1 for 15.3[0] associated with 112.5% 1

(e) 12

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0580	42

2	(a) (i) $[\cos A=]\frac{32^2+64^2-43^2}{2\times 32\times 64}$	M2	M1 for correct implicit version
	2×32×64		$43^2 = 32^2 + 64^2 - 2 \times 32 \times 64 \cos A$
	37.00[]	A2	A1 for $\frac{3271}{4096}$ or 0.798 to 0.799
	(ii) 616 or 616.2 to 616.4	2	M1 for $\frac{1}{2} \times 32 \times 64 \times \sin 37$ oe
	(b) [Sin <i>ADC</i> =] $\frac{64\sin 55}{70}$ soi by 48.49rounded or truncated or x^2 -(73.41 to 73.42) x - 804 [= 0]	M2	M1 for correct implicit version of sine rule or cosine rule with <i>x</i>
	$\frac{70\sin(125 - their48.5)}{\sin 55}$	M2	M1 for implicit sine rule or cosine rule
	$ \frac{\sin 55}{\operatorname{or} 64^2 + 70^2 - 2 \times 64 \times 70 \cos(125 - their 48.5)} $		or for one error in quadratic solution
	or solving their 3 term quadratic equation		Ignore negative solutions
	228 or 228.0 to 228.1 www	A2	A1 for 83.0 to 83.1
3	(a) (i) $2(2x+1)(x-5)$ final answer	3	B1 for $2(2x^2 - 9x - 5)$ and B1 for $(2x + 1) (x - 5)$ or SC2 for expansion of brackets gives 3 correct terms e.g. $(2x + 1) (2x - 10)$ or $(4x + 2)(x - 5)$ or SC1 for expansion of brackets gives 2 correct terms e.g. $(2x - 1)(2x + 10)$ or $(4x - 2)(x - 4)$
	(ii) -1/20e, 5	1ft	Correct or ft their 2 brackets
	(b) $\frac{[]7 \pm \sqrt{([-]7)^2 - 4(2)(-10)}}{2(2)}$	B2	B1 for $\sqrt{([-]7)^2 - 4(2)(-10)}$ [= $\sqrt{129}$] If in form $\frac{p + \sqrt{q}}{r}$ or $\frac{p - \sqrt{q}}{r}$,
			r $rB1 for -7 and 2(2) or better$
	-1.09, 4.59 final answers	B1B1	If B0 , SC1 for -1.1 and 4.6 as final answers or -1.089 and 4.589 as final answers or -1.09 and 4.59 seen

	Page 4	Mark Schen	Mark Scheme			Paper	
	-	IGCSE – October/Nov	IGCSE – October/November 2012			42	
		$\frac{-10}{3x-1)(x-2)}$ or $\frac{-10}{3x^2-7x+2}$	3	M1 for $6(x-2) - 2(3x-1)$ or better. Allow recovery after missing bracket[s]			
	as	s final answer			r $(3x-1)(x-2)$ as tor seen (may be as		
4	(a) (i) 148	2	B1 for tan May be or	gent/radius = 90° s n diagram	seen.	
	(i	i) 74	1ft	ft <i>their</i> (a)	$(\mathbf{i}) \div 2$ dep on (\mathbf{a})	(i) < 180	
	(i	ii) 21	2		0 – 90 – 143 – 32 quadrilateral <i>AOC</i>		
	(i	v) 20.9 or 20.92	3	M2 for 6 tan 74 oe or explicit sine rule Or M1 for implicit version			
	(b) (i) 51	2	M1 for <i>A1</i>	$BC = 90^\circ$. May be	on diagram.	
	(i	i) 56	2		+ 17 or 180 – (73] 180 – (39 + 17)	+ <i>their</i> 51)	
	(i	ii) <u>Angle</u> at <u>centre twice</u> oe angle at <u>circumference</u>	1				
	(i	v) 22	1				
	(1	(7) 68.3 or 68.27 to 68.29	3	Allow $\frac{32}{15}$	$\frac{6}{5}\pi$ as final answer		
				M2 for $\frac{30}{2}$	$\frac{60-34}{360} \times 2\pi \times 12$		
				or $2\pi \times 12$	$2-\frac{34}{360}\times 2\pi\times 12$		
				or $\pi \times 12$	$+\frac{180-34}{360}\times 2\pi\times 1$	2	
				or M1 for	use of $\frac{\theta}{360} \times 2\pi \times$	12	
				for $\theta \neq m$	ultiples of 90°		

	Page 5	Mark Scheme			Syllabus	Paper
		IGCSE – October/Nov	ember 20	012	0580	42
5	(6 × 140 -	$\begin{array}{l} 50, 100, 140, 180, 220\\ 20 + 10 \times 60 + 28 \times 100 + 76 \times \\ + 22 \times 180 + 16 \times 220)\\ 1640) \end{array}$	M1 M1	$\sum fm$ wh either end	correct mid - valu tere <i>m</i> is in the correct of interval as <i>m</i> further slip	ies soi rrect interval, allow
	(b) (i)	 ÷ 158 or ∑ f 137 or 136.9 to 137.0 16, 126 	M1 A1 1, 1		n second method 37 or better ww	
		rectangular bar of height 0.2 rectangular bar of height 1.05 correct widths of 80 and 120 with no gaps	1ft 1ft 1		om <i>their</i> 16 om <i>their</i> 126	
	(c) 135		3		$\frac{5 \times 136 + 3 \times 130}{15 + 3}$ 15 × 136 and 3 × [2040] and [39]	
6	(a) 5.83	or 5.830 to 5.831	2		$\overline{4}$ as final answer $(-15)^2$	
		Vector drawn from P to Q at (14, 3)	1	Must have	e arrow in correct	direction
	(ii)	Points at (8, 11) and (13, 14)	1, 1	SC1 for p	oints at (8, 5) and	(3, 2)
	(c) 3a –	2 b	2		$-3\mathbf{b} + 2\mathbf{a} + \mathbf{b}$ or \mathbf{c} xtures of vector n	
	(d) $\begin{pmatrix} 7 \\ -6 \end{pmatrix}$		1 1			
	(e) (i)	$\mathbf{b} - \mathbf{c}$ oe	1	Allow uns	simplified	

	Page 6		Mark Scher			Syllabus	Paper
			IGCSE – October/Nov	/ember 2	012	0580	42
		(ii)	MX = MB + BX $\pm \frac{1}{4} \text{ or } \pm \frac{3}{4} \text{ used}$	M1 M1	Any order for the M marks For a correct route		
		³ / ₄ c	$-\frac{1}{4}$ b or $\frac{1}{4}$ (3 c - b) or $\frac{3c}{4} - \frac{b}{4}$	A2	A1 for $\frac{1}{2}$ b + $\frac{3}{4}$ (c - b) oe Any correct unsimplified After 0 scored SC2 for $\frac{2}{3}$ c -1/6b		
7	(a)	(i)	$x \ge 5$		B1 for eac	ch correct inequality	ý
			$y \leq 8$		Penalise t inequalitie	he first occurrence es used	only when strict
			$x + y \le 14$				
			$y \ge \frac{1}{2}x$ oe	4			
		(ii)	x = 5 ruled y = 8 ruled x + y = 14 ruled $y = \frac{1}{2} x \text{ ruled}$ region indicated	1 1 1 1 1dep	region Check at i Check at i		·
	(b)	(i)	480	2		$x + 45 \times y$ where nd (x, y) is in their of	•
		(ii)	6, 8	1	In correct	order	
8	(a)	(i)	Tangent drawn at $x = 2.5$	1	daylight,	e tangent at correct or chord, crossing <i>x</i> extended if necessa	-axis between 1.7,
		(ii)	1.55 to 2.2	2dep		nt on correct tanger at $x = 2.5$	t or close attempt
					M1dep att	x = x + y + x + y + y + y + y + y + y + y +	0
					with correc		
	(b)	1.42	2 to 1.45 and 2.8 to 2.82	1, 1			
	(c)	(i)	4.4, 2.5, 1.5	2	B1 for 2 c	correct values	

Pa	nge 7	Mark Schen	Syllabus	Paper		
		IGCSE – October/Nov	ember 20)12	0580	42
	(ii)	6 correct points plotted curve through all 6 points and correct shape	P2ft C1	Smooth cu	or 5 correct plots urve but last 3 point e of plot[s], allow cr	
	(iii)	0.75 to 0.9	1	Solutions	may be in any orde	r
		1.6 to 1.7	1			
		2.6 to 2.7	1			
9	(a) (i)	F 5 (11) 7 2 S	2		outside of circles in a e of 5, 11, 7 correct	
	(ii)		1ft	ft <i>their</i> 2 -	+ their 7	
	(iii) (iv)	11	1 1ft	ft <i>their</i> 11	from diagram / 25	
	(v)	$\frac{42}{600}$ oe $=\frac{7}{100}$	2ft	ft <i>their</i> 7 f M1 for <u>th</u>	the formula f	
				After 0 sc	ored, SC1 for $\frac{their}{25}$	$\times \frac{\text{their}(7)}{25}$

Pa	age 8	Mark Scheme		Syllabus	Paper	
		IGCSE – October/Nov	ember 20)12	0580	42
	(b) (i)	$F = \left(\begin{array}{c} 5 \\ G \\ 4 \end{array} \right)^{-12}$ $F = \left(\begin{array}{c} 5 \\ 4 \\ 7 \\ 12 \end{array} \right)^{-12}$ $S = \left(\begin{array}{c} 6 \\ 7 \\ 12 \\ 5 \end{array} \right)^{-12}$ $S = \left(\begin{array}{c} 6 \\ 6 \\ 12 \\ 7 \\ 5 \end{array} \right)^{-12}$	4	zeros unambigu B1 for 4 i B1 for 12	where needed	n with blanks or and labelled
	(ii)	28	1ft	Correct or	ft from <i>their</i> diagr	am
10	(a) (i)	20	1			
	(ii)	n-4 oe n+4 oe n+6 oe	2	Accept un B1 for two	simplified o correct	
	(iii)	(n-4)(n+4) - (n-6)(n+6)	M1	ft from the implied by 36) or n^2 -	eir algebraic express y $n^2 - 4n + 4n - 16$ - $16 - (n^2 - 36)$	sions can be $-(n^2-6n+6n-6n)$
		$n^2 - 4n + 4n - 16 - (n^2 - 6n + 6n - 36)$ or better		Must have	e a line of algebra	
		20	E1	With no e	rrors or omission o	f brackets
	(b) (i)	24	1			

Page 9	Mark Scher	ne		Syllabus	Paper
	IGCSE – October/November 2012		0580	42	
	(n-5)(n+5) - (n-7)(n+7) isw or $n^2 - 25 - (n^2 - 49)$ isw or $n^2 - 25 - n^2 + 49$ isw $(23) - (9 \times 25)$ 253 - 225 [= 28]	2 E1	Allow alg	(-5, n+5, n-7, n+6) ebraic solution from (+6) - (n-8)(n+8)	n
(d) 4 <i>t</i> oe	;	1	Accept un e.g. $n^2 - ($	simplified $(t-1)^2 - [n^2 - (t+1)^2]$) ²]
(e) $c = 2$	28 and $d = 30$ 52	1 1			